ENGINEERING PHYSICS

Home Department: Natural Sciences

Department Head:

Daniel O. Ludwigsen, Ph.D. Room 2-323A, 810-762-7488 naturalsciences@kettering.edu

Program Overview

The Bachelor of Science in Engineering Physics degree at Kettering University unifies physics knowledge and applications in optics, acoustics, and advanced materials with a comprehensive engineering component to prepare graduates for engineering applications in emerging technology. The well balanced curriculum in Engineering Physics provides a solid education combined with desirable skills that could lead to a career in industry and government sector as well as graduate studies in applied sciences and engineering.

Physics is the most fundamental science and underlies the understanding of nearly all areas of science, technology, and engineering. Physics is concerned with the study of energy, space, time, matter, the interaction between material objects and the laws that govern these interactions at various scales from sub nano-scale to light-years scale.

Physicists study mechanics, sound, heat, light, electric and magnetic fields, gravitation, relativity, atomic and nuclear physics, solid state physics, wave-like properties of particles and particle-like properties of radiation. Engineering physics is not a specific branch of physics but the application of all branches of physics to the broad realm of practical problems in scientific and industrial settings, engineering design and applications, applied science, and advanced industry. Engineering Physics (EP) is the interface of physics with specific areas of advanced or emerging technology, which are not covered in depth under the traditional engineering education, such as applications of optics, acoustics, and materials in fields like nanotechnology, telecommunications, medical physics degree is a flexible degree designed to interface physics with applied sciences and engineering disciplines.

- Engineering Physics (EP) students at Kettering take the same core physics courses as physics students at other universities. Furthermore, Kettering's Physics students are required to take a sequence of courses in optics, acoustics and materials.
- Engineering Physics (EP) students at Kettering University will graduate from a distinctive physics program, unique in the nation. The cooperative education and experiential learning model at Kettering University provides Engineering Physics students with a rich co-op experience, complete with a senior thesis while they are undergraduates.
- The Engineering Physics (EP) program includes a thorough background in mathematics, science, engineering fundamentals, social sciences, humanities, and communication coupled with an individually designed engineering component.
- Engineering Physics (EP) students complete an individually designed sequence of courses in engineering that culminates in an engineering capstone design experience. Popular options include sequences such as energy systems engineering or mechanical design.

• The Engineering Physics program is accredited by the Engineering Accreditation Commission (EAC) of ABET.

For more information about the Engineering Physics program, including pictures and descriptions of our laboratory facilities and minors, please visit the degree program website.

Program Educational Objectives

Engineering Physics graduates will:

- Thrive in graduate studies, technical careers, or engineering practices using broad based scientific knowledge.
- Work effectively in diverse professional environments and multidisciplinary projects.
- Improve their workplaces and communities, and the society through professional and personal activities.

Dual Majors

One of the advantages of being an Engineering Physics major is that because physics meshes well with nearly every science and engineering discipline, it is very easy to pursue a dual option. Pursuing a dual major will create greater flexibility in terms of future career or graduate studies.

When an undergraduate student simultaneously completes two sets of major requirements, they earn a dual major. Students must complete a minimum of 161 credit hours to earn the Bachelor of Science degree AND complete all course requirements for both majors. Dual majors will require additional credits beyond the 161 minimum. The capstone course required in other engineering majors will be part of the Engineering Elective sequence for the Engineering Physics major. Only one thesis is required. Approval and academic advising from both academic departments is required.

Specialization within the Physics Program

Applied and Engineering Physics students may obtain a minor in acoustics, but they are not eligible for a minor in physics.

International Programs

Engineering Physics students often utilize the flexible Engineering Elective sequence built in their curriculum to study more deeply in a chosen area of engineering. This can be used to facilitate student participation in an existing study abroad program. This flexibility in the Engineering Physics curriculum may also be useful in better planning and preparing for future graduate studies and career.

Engineering Physics Program Curriculum Requirements

Code	Title	Credit Hours
First Year Experience	e	
CILE-101	First Year Foundations	1
General Education		
COMM-101	Rhetoric & Writing	4
ECON-201	Economic Principles	4
LA-201	Sophomore Seminar. Exploring the Human Condition	4
LA-489	Sr. Seminar.Leadership, Ethics	4

Advanced Humanities Electives ¹ 8 Advanced Social Science Electives 8 33

Total Credit Hours

1 Humanities and Social Science advanced electives must be selected from approved 300 and 400 level courses.

Code		Credit Hours
Engineering		
EE-240	Electromagnetic Fields and Applications	4
EP-335	Computational Physics	4
EP-485	Acoustic Testing and Modeling	4
IME-100	Interdisciplinary Design and Manufacturing	4
Select an intermedia	ate engineering option:	8
MECH-210 & MECH-212	Statics and Mechanics of Materials	
CE-210 & CE-320	Intro to Digital Systems Design and Intro to Microcomputers	
Select one of the fo	llowing:	4
EE-210 & EE-211	Circuits I and Circuits I Lab	
EE-212 & MECH-231L	Applied Electrical Circuits and Signals for Mechanical Systems Lab	
Select one of the fo	llowing:	4
EP-342	Introduction to Materials Science and Engineering	
MECH-307	Materials Engineering	
Engineering Elective	e Sequence ²	20
	Credit Hours Subtotal:	52
Chemistry		
Select one of the fo	llowing:	4
CHEM-137 & CHEM-136	General Chemistry I and Principles of Chemistry Lab	
CHEM-135 & CHEM-136	Principles of Chemistry and Principles of Chemistry Lab	
	Credit Hours Subtotal:	4
Mathematics		
MATH-101	Calculus I	4
or MATH-101X	Calculus I	
Select one of the fo	llowing:	4
MATH-102	Calculus II	
MATH-102X	Calculus II	
MATH-102H	Calculus II - Honors	
MATH-203	Multivariate Calculus	4
or MATH-203H	Multivariate Calculus - Honors	A
MATH-204	Differential Equations & Laplace Transforms	4
or MATH-204H	Differential Equations and Laplace Transform Honors	s -
MATH-258	Probability and Statistics	4

Total Credit Hours		128
CILE-400	Culminating Undergraduate Experience: Thesis ³	4
Culminating Underg		0
	Credit Hours Subtotal:	8
Free Electives		8
Electives		
	Credit Hours Subtotal:	60
Advanced Physics Elective	Any PHYS or EP course that is not a core physics requirement listed above	4
PHYS-477	Optics and Lab	4
PHYS-462	Quantum Mechanics	4
PHYS-452	Thermodynamics and Statistical Physics	4
PHYS-412	Theoretical Mechanics	4
PHYS-362	Modern Physics and Lab	4
PHYS-302	Vibration, Sound and Light	4
PHYS-224 & PHYS-225	Electricity and Magnetism and Electricity and Magnetism Laboratory	4
PHYS-114 & PHYS-115	Newtonian Mechanics and Newtonian Mechanics Laboratory	4
Physics		
or MATH-307	Matrix Algebra	
MATH-305	Numerical Methods and Matrices	4
or MATH-327	Probability & Stochastic Modeling	

(Minimum) Total Credits Required for Program: 161

 $^{\rm 2}\,$ The Engineering Elective Sequence provides a depth of study in a specific engineering field, and must culminate in a senior level capstone design experience. Engineering sequence courses will be designed based on individual student interests and their future career or graduate studies plans and will be approved by the academic advisor.

3 Students are automatically registered for CILE-400 in a co-op term when they reach Junior II status.

Representative Program

Course	Title	Credit Hours
Freshman I		
CILE-101	First Year Foundations	1
CHEM-137 or CHEM-135	General Chemistry I or Principles of Chemistry	3
CHEM-136	Principles of Chemistry Lab	1
COMM-101	Rhetoric & Writing	4
IME-100	Interdisciplinary Design and Manufacturing	4
MATH-101	Calculus I	4
	Credit Hours	17
Freshman II		
ECON-201	Economic Principles	4
MATH-102	Calculus II	4
MECH-210	Statics	4

PHYS-114	Newtonian Mechanics	3
PHYS-115	Newtonian Mechanics Laboratory	1
	Credit Hours	16
Sophomore I		
LS-201	Sophomore Seminar. Exploring the Human Condition	4
MATH-203	Multivariate Calculus	4
MECH-212	Mechanics of Materials	4
PHYS-224	Electricity and Magnetism	3
PHYS-225	Electricity and Magnetism Laboratory	1
	Credit Hours	16
Sophomore II		
EP-335	Computational Physics	4
MATH-204	Differential Equations & Laplace Transforms	4
PHYS-362	Modern Physics and Lab	4
Advanced Humanit	ies or Social Science Elective	4
	Credit Hours	16
Junior I		
Select one of the fo	llowing:	4
EE-210 & EE-211	Circuits I and Circuits I Lab	
EE-212	Applied Electrical Circuits	
& MECH-231L	and Signals for Mechanical Systems Lab	
PHYS-302	Vibration, Sound and Light	4
Engineering Electiv	e Sequence ¹	4
Advanced Humanit	ies or Social Science Elective	4
	Credit Hours	16
Junior II		
EE-240	Electromagnetic Fields and Applications	4
EP-342 or MECH-307	Introduction to Materials Science and Engineering or Materials Engineering	4
MATH-258 or MATH-327	Probability and Statistics or Probability & Stochastic Modeling	4
Advanced Physics	Elective ²	4
Engineering Electiv	e Sequence ¹	4
Senior I	Credit Hours	20
MATH-305	Numerical Methods and Matrices	4
or MATH-307	or Matrix Algebra	
PHYS-412	Theoretical Mechanics	4
PHYS-477	Optics and Lab	4
Advanced Humanit	ies or Social Science Elective	4
Engineering Electiv	e Sequence ¹	4
	a 15-11	20
	Credit Hours	20
Senior II	Credit Hours	20
Senior II EP-485	Credit Hours Acoustic Testing and Modeling	4

Engineering Elective	e Sequence ¹	4
Free Elective		4
	Credit Hours	20
Senior III		
PHYS-462	Quantum Mechanics	4
Engineering Elective	e Capstone Design ¹	4
Advanced Humanit	ies or Social Science Elective	4
Free Elective		4
	Credit Hours	16
Any Term		
CILE-400	Culminating Undergraduate Experience:	4
	Thesis	
	Credit Hours	4
	Total Credit Hours	161

(Minimum) Total Credits Required for Program: 161

¹ The Engineering Elective Sequence provides a depth of study in a specific engineering field, and must culminate in a senior level capstone design experience. Engineering sequence courses will be designed based on individual student interests and their future career or graduate studies plans and will be approved by the academic advisor.

advisor.
 ² Advanced Physics Electives includes any PHYS or EP course, which is not a core physics requirement as listed above.