Engineering Physics

Home Department: Physics

Department Head:
Daniel O. Ludwigsen, Ph.D.
Room 2-323A, 810-762-7488
physics@kettering.edu

Program Overview

Physics is the most fundamental science and underlies the understanding of nearly all areas of science, technology, and engineering. Physics is concerned with the study of energy, space, time, matter, the interaction between material objects and the laws that govern these interactions at various scales from sub nano-scale to light-years scale. Physicists study mechanics, sound, heat, light, electric and magnetic fields, gravitation, relativity, atomic and nuclear physics, solid state physics, wave-like properties of particles and particle-like properties of radiation. Engineering physics is not a specific branch of physics but the application of all branches of physics to the broad realm of practical problems in scientific and industrial settings, engineering design and applications, applied science, and advanced industry. Engineering Physics (EP) is the interface of physics with specific areas of advanced or emerging technology, which are not covered in depth under the traditional engineering education, such as applications of optics, acoustics, and materials in fields like nanotechnology, telecommunications, medical physics and devices, or advanced and electronic materials. The Engineering Physics degree is a flexible degree designed to interface physics with applied sciences and engineering disciplines.

The Bachelor of Science in Engineering Physics (EP) degree at Kettering University unifies physics knowledge and applications in optics, acoustics, and advanced materials with a comprehensive engineering component to prepare graduates for engineering applications in emerging technology. The well balanced curriculum in Engineering Physics provides a solid education combined with desirable skills that could lead to a career in industry and government sector as well as graduate studies in applied sciences and engineering.

• Engineering Physics (EP) students at Kettering take the same core physics courses as physics students at other universities. Furthermore, our Physics students are required to take a sequence of courses in optics, acoustics and materials.
• Engineering Physics (EP) students at Kettering University will graduate from the most distinctive physics program in the nation. The cooperative education and experiential learning model at Kettering University provides Engineering Physics students with a rich co-op experience, complete with a senior thesis while they are undergraduates.
• The Engineering Physics (EP) program includes a thorough background in mathematics, science, engineering fundamentals, social sciences, humanities, and communication coupled with an individually designed engineering component.
• Engineering Physics (EP) students complete an individually designed sequence of courses in engineering that culminates in an engineering capstone design experience. Popular options include sequences such as energy systems engineering or mechanical design.
• The Engineering Physics program at Kettering University is an ABET accredited engineering physics program.

For more information about the Engineering Physics program, including pictures and descriptions of our laboratory facilities and minors, please visit our degree program website, or send an email to physics@kettering.edu.

Program Educational Objectives

Engineering Physics graduates will:

• Thrive in graduate studies, technical careers, or engineering practices using broad based scientific knowledge.
• Work effectively in diverse professional environments and multi-disciplinary projects.
• Improve their workplaces and communities, and the society through professional and personal activities.

Dual Majors

One of the advantages of being an Engineering Physics major is that because physics leads to or has overlaps with nearly every science and engineering discipline, it makes it very easy to pursue a dual option. Pursuing a dual option will create greater flexibility in terms of future career or graduate studies.

When an undergraduate student simultaneously completes two sets of major requirements, he or she earns a dual major. Students must complete a minimum of 161 credit hours to earn the Bachelor of Science degree AND complete all course requirements for both majors. Dual majors will require additional credits beyond the 161 minimum. If capstone courses are required in both majors both must be completed. Only one thesis is required. Approval and academic advising from both academic departments is required.

For further information please contact the Physics Department Head at physics@kettering.edu.

Specialization within the Physics Program

Applied and Engineering Physics students may obtain a minor in acoustics, applied optics, medical physics, or materials science, but they are not eligible for a minor in physics. See the catalog description of minors for more information, or please contact the Physics Department Head at physics@kettering.edu.

Track of Studies and International Programs

Engineering Physics students may utilize the flexibility built in the physics curriculum to use their elective courses toward a collection of courses in a chosen area of engineering. This in particular could be useful in designing a track of study that may facilitate student participation in an existing study abroad program. This flexibility in the Physics curriculum may also be useful in better planning and preparing for future graduate studies and career. For further information about this please contact the Physics Department Head at physics@kettering.edu.

Engineering Physics Program Curriculum Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILE-101</td>
<td>First Year Foundations</td>
<td>1</td>
</tr>
</tbody>
</table>
General Education

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM-101</td>
<td>Rhetoric & Writing I</td>
<td>4</td>
</tr>
<tr>
<td>COMM-201</td>
<td>Rhetoric & Writing II</td>
<td>4</td>
</tr>
<tr>
<td>ECON-201</td>
<td>Economic Principles</td>
<td>4</td>
</tr>
<tr>
<td>LS-201</td>
<td>Sophomore Seminar: Exploring the Human Condition</td>
<td>4</td>
</tr>
<tr>
<td>LS-489</td>
<td>Senior Seminar: Leadership, Ethics, and Contemporary Issues</td>
<td>4</td>
</tr>
</tbody>
</table>

Advanced Humanities Elective 1 4
Advanced Comm, Humanities or Social Science Elective 1 4
Advanced Social Science Elective 1 4

Credit Hours Subtotal: 33

Total Credit Hours

33

1 Humanities, Social Science, and Communications advanced electives must be selected from approved 300 and 400 level courses, including one Humanities course and one Social Science Course. Additionally, two of the three advanced electives must be writing intensive.

Code	Title	Credit Hours

Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-235</td>
<td>Computers in Physics</td>
<td>4</td>
</tr>
<tr>
<td>EP-485</td>
<td>Acoustic Testing and Modeling</td>
<td>4</td>
</tr>
<tr>
<td>EE-240</td>
<td>Electromagnetic Fields and Applications</td>
<td>4</td>
</tr>
<tr>
<td>IME-100</td>
<td>Interdisciplinary Design and Manufacturing</td>
<td>4</td>
</tr>
<tr>
<td>MECH-210</td>
<td>Statics</td>
<td>4</td>
</tr>
<tr>
<td>MECH-212</td>
<td>Mechanics of Materials</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-210</td>
<td>Circuits I & Circuits I Lab</td>
<td>4</td>
</tr>
<tr>
<td>EE-212 & MECH-231L</td>
<td>Applied Electrical Circuits and Signals for Mechanical Systems Lab</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-342</td>
<td>Introduction to Materials Science and Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MECH-307</td>
<td>Materials Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Elective Sequence

Credit Hours Subtotal: 52

Chemistry

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-137</td>
<td>General Chemistry I & Principles of Chemistry Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-135</td>
<td>Principles of Chemistry & Principles of Chemistry Lab</td>
<td>4</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 4

Mathematics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-101</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH-101X</td>
<td>Calculus I</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-102</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH-102X</td>
<td>Calculus II</td>
<td>4</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 4

Physics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-114</td>
<td>Newtonian Mechanics & Newtonian Mechanics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-224 & PHYS-225</td>
<td>Electricity and Magnetism & Electricity and Magnetism Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-302</td>
<td>Vibration, Sound and Light</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-362</td>
<td>Modern Physics and Lab</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-412</td>
<td>Theoretical Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-452</td>
<td>Thermodynamics and Statistical Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-462</td>
<td>Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS-477</td>
<td>Optics and Lab</td>
<td>4</td>
</tr>
</tbody>
</table>

Advanced Physics Elective

Credit Hours Subtotal: 60

Electives

Free Electives

Credit Hours Subtotal: 8

Culminating Undergraduate Experience

CILE-400 | Culminating Undergraduate Experience: Thesis | 4

Total Credit Hours

128

(Minimum) Total Credits Required for Program: 161

2 The Engineering Elective Sequence provides a depth of study in a specific engineering field, and must culminate in a senior level capstone design experience. Engineering sequence courses will be designed based on individual student interests and their future career or graduate studies plans and will be approved by the academic advisor.

3 Students are automatically registered for CILE-400 in a co-op term when they reach Junior II status.

Representative Program

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILE-101</td>
<td>First Year Foundations</td>
<td>1</td>
</tr>
<tr>
<td>CHEM-137</td>
<td>General Chemistry I or Principles of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-136</td>
<td>Principles of Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>COMM-101</td>
<td>Rhetoric & Writing I</td>
<td>4</td>
</tr>
</tbody>
</table>

Freshman I
IME-100 Interdisciplinary Design and Manufacturing 4
MATH-101 Calculus I 4

Freshman II
ECON-201 Economic Principles 4
MATH-102 Calculus II 4
MECH-210 Statics 4
PHYS-114 Newtonian Mechanics 3
PHYS-115 Newtonian Mechanics Laboratory 1

Credit Hours 17

Sophomore I
LS-201 Sophomore Seminar: Exploring the Human Condition 4
MATH-203 Multivariate Calculus 4
MECH-212 Mechanics of Materials 4
PHYS-224 Electricity and Magnetism 3
PHYS-225 Electricity and Magnetism Laboratory 1

Credit Hours 16

Sophomore II
COMM-201 Rhetoric & Writing II 4
EP-235 Computers in Physics 4
MATH-204 Differential Equations & Laplace Transforms 4
PHYS-362 Modern Physics and Lab 4

Credit Hours 16

Junior I
Select one of the following: 4
EE-210 Circuits I 4
& EE-211 Circuits I Lab
EE-212 Applied Electrical Circuits and Signals for Mechanical Systems Lab
PHYS-302 Vibration, Sound and Light 4
Engineering Elective Sequence 4
Advanced Humanities Elective 4

Credit Hours 16

Junior II
EE-240 Electromagnetic Fields and Applications 4
EP-252 Introduction to Materials Science and Engineering or Materials Engineering 4
MATH-258 Probability and Statistics or Probability & Stochastic Modeling 4
or MATH-327 Advanced Physics Elective 4
Engineering Elective Sequence 4

Credit Hours 20

Senior I
MATH-305 Numerical Methods and Matrices or Matrix Algebra 4
PHYS-412 Theoretical Mechanics 4
PHYS-477 Optics and Lab 4
Advanced Social Science Elective 4

Engineering Elective Sequence 4

Credit Hours 20

Senior II
EP-485 Acoustic Testing and Modeling 4
PHYS-452 Thermodynamics and Statistical Physics 4
Advanced Comm, Humanities or Social Science Elective 4
Engineering Elective Sequence 4
Free Elective 4

Credit Hours 20

Senior III
LS-489 Senior Seminar: Leadership, Ethics, and Contemporary Issues 4
PHYS-462 Quantum Mechanics 4
Engineering Elective Capstone Design 4
Free Elective 4

Any Term
CILE-400 Culminating Undergraduate Experience: Thesis 4

Credit Hours 4

Total Credit Hours 16

(Minimum) Total Credits Required for Program: 161

1 The Engineering Elective Sequence provides a depth of study in a specific engineering field, and must culminate in a senior level capstone design experience. Engineering sequence courses will be designed based on individual student interests and their future career or graduate studies plans and will be approved by the academic advisor.

2 Advanced Physics Electives includes any PHYS or EP course, which is not a core physics requirement as listed above.